Accurately predicting interactive road agents' future trajectories and planning a socially compliant and human-like trajectory accordingly are important for autonomous vehicles. In this paper, we propose a planning-centric prediction neural network, which takes surrounding agents' historical states and map context information as input, and outputs the joint multi-modal prediction trajectories for surrounding agents, as well as a sequence of control commands for the ego vehicle by imitation learning. An agent-agent interaction module along the time axis is proposed in our network architecture to better comprehend the relationship among all the other intelligent agents on the road. To incorporate the map's topological information, a Dynamic Graph Convolutional Neural Network (DGCNN) is employed to process the road network topology. Besides, the whole architecture can serve as a backbone for the Differentiable Integrated motion Prediction with Planning (DIPP) method by providing accurate prediction results and initial planning commands. Experiments are conducted on real-world datasets to demonstrate the improvements made by our proposed method in both planning and prediction accuracy compared to the previous state-of-the-art methods.
translated by 谷歌翻译
Federated learning (FL) has achieved great success as a privacy-preserving distributed training paradigm, where many edge devices collaboratively train a machine learning model by sharing the model updates instead of the raw data with a server. However, the heterogeneous computational and communication resources of edge devices give rise to stragglers that significantly decelerate the training process. To mitigate this issue, we propose a novel FL framework named stochastic coded federated learning (SCFL) that leverages coded computing techniques. In SCFL, before the training process starts, each edge device uploads a privacy-preserving coded dataset to the server, which is generated by adding Gaussian noise to the projected local dataset. During training, the server computes gradients on the global coded dataset to compensate for the missing model updates of the straggling devices. We design a gradient aggregation scheme to ensure that the aggregated model update is an unbiased estimate of the desired global update. Moreover, this aggregation scheme enables periodical model averaging to improve the training efficiency. We characterize the tradeoff between the convergence performance and privacy guarantee of SCFL. In particular, a more noisy coded dataset provides stronger privacy protection for edge devices but results in learning performance degradation. We further develop a contract-based incentive mechanism to coordinate such a conflict. The simulation results show that SCFL learns a better model within the given time and achieves a better privacy-performance tradeoff than the baseline methods. In addition, the proposed incentive mechanism grants better training performance than the conventional Stackelberg game approach.
translated by 谷歌翻译
Image super-resolution is a common task on mobile and IoT devices, where one often needs to upscale and enhance low-resolution images and video frames. While numerous solutions have been proposed for this problem in the past, they are usually not compatible with low-power mobile NPUs having many computational and memory constraints. In this Mobile AI challenge, we address this problem and propose the participants to design an efficient quantized image super-resolution solution that can demonstrate a real-time performance on mobile NPUs. The participants were provided with the DIV2K dataset and trained INT8 models to do a high-quality 3X image upscaling. The runtime of all models was evaluated on the Synaptics VS680 Smart Home board with a dedicated edge NPU capable of accelerating quantized neural networks. All proposed solutions are fully compatible with the above NPU, demonstrating an up to 60 FPS rate when reconstructing Full HD resolution images. A detailed description of all models developed in the challenge is provided in this paper.
translated by 谷歌翻译
神经文本排名模型已经见证了显着的进步,并越来越多地在实践中部署。不幸的是,它们还继承了一般神经模型的对抗性脆弱性,这些神经模型已被检测到,但仍未被先前的研究所忽视。此外,Blackhat SEO可能会利用继承的对抗性漏洞来击败受保护的搜索引擎。在这项研究中,我们提出了对黑盒神经通道排名模型的模仿对抗攻击。我们首先表明,可以通过列举关键查询/候选者,然后训练排名模仿模型来透明和模仿目标段落排名模型。利用排名模仿模型,我们可以精心操纵排名结果并将操纵攻击转移到目标排名模型。为此,我们提出了一种由成对目标函数授权的基于创新的基于梯度的攻击方法,以产生对抗性触发器,该触发器会导致有预谋的混乱,而具有很少的令牌。为了配备触发器的伪装,我们将下一个句子预测损失和语言模型流利度限制添加到目标函数中。对通过排名的实验结果证明了对各种SOTA神经排名模型的排名模仿攻击模型和对抗触发器的有效性。此外,各种缓解分析和人类评估表明,在面对潜在的缓解方法时,伪装的有效性。为了激励其他学者进一步研究这一新颖和重要的问题,我们将实验数据和代码公开可用。
translated by 谷歌翻译
我们提出了一种新的表结构识别方法(TSR)方法,称为TSRFormer,以稳健地识别来自各种表图像的几何变形的复杂表的结构。与以前的方法不同,我们将表分离线预测作为线回归问题,而不是图像分割问题,并提出了一种新的两阶段基于基于DETR的分离器预测方法,称为\ textbf {sep} arator \ textbf {re} re} tr} ansformer(sepretr),直接预测与表图像的分离线。为了使两阶段的DETR框架有效地有效地在分离线预测任务上工作,我们提出了两个改进:1)一种先前增强的匹配策略,以解决慢速收敛问题的detr; 2)直接来自高分辨率卷积特征图的样本特征的新的交叉注意模块,以便以低计算成本实现高定位精度。在分离线预测之后,使用简单的基于关系网络的单元格合并模块来恢复跨越单元。借助这些新技术,我们的TSRFormer在包括SCITSR,PubTabnet和WTW在内的多个基准数据集上实现了最先进的性能。此外,我们已经验证了使用复杂的结构,无边界的单元,大空间,空的或跨越的单元格以及在更具挑战性的现实世界内部数据集中扭曲甚至弯曲的形状的桌子的鲁棒性。
translated by 谷歌翻译
Federated学习(FL)作为保护分布式机器学习框架引起了很多关注,许多客户通过将模型更新与参数服务器交换而不是共享其原始数据来协作训练机器学习模型。然而,FL培训遭受了缓慢的收敛性和不稳定的性能,这是由于客户的异质计算资源引起的散乱者和沟通率的波动。本文提出了一个编码的FL框架来减轻Straggler问题,即随机编码的联合学习(SCFL)。在此框架中,每个客户端通过将附加噪声添加到其本地数据的随机线性组合中,从而生成一个隐私的编码数据集。服务器从所有客户端收集编码的数据集来构建复合数据集,这有助于补偿散布效果。在培训过程中,服务器和客户端执行迷你批次随机梯度下降(SGD),并且服务器在模型聚合中添加了一个化妆术语,以获得无偏的梯度估计。我们通过共同信息差异隐私(MI-DP)来表征隐私保证,并分析联合学习中的收敛性能。此外,我们通过分析隐私约束对收敛率的影响,证明了拟议的SCFL方法的隐私性绩效权衡。最后,数值实验证实了我们的分析,并显示了SCFL在保持数据隐私的同时实现快速收敛的好处。
translated by 谷歌翻译
联邦边缘学习(诱导)吸引了许多隐私范例的关注,以有效地纳入网络边缘的分布式数据来训练深度学习模型。然而,单个边缘服务器的有限覆盖范围导致参与者的客户节点数量不足,这可能会损害学习性能。在本文中,我们调查了一种新颖的感觉框架,即半分散的联邦边缘学习(SD-INES),其中采用多个边缘服务器集体协调大量客户端节点。通过利用边缘服务器之间的低延迟通信进行高效的模型共享,SD-Feels可以包含更多的培训数据,同时与传统联合学习相比享受更低的延迟。我们详细介绍了三个主要步骤的SD感觉的培训算法,包括本地模型更新,群集内部和群集间模型聚合。在非独立和相同分布的(非IID)数据上证明了该算法的收敛性,这也有助于揭示关键参数对培训效率的影响,并提供实用的设计指南。同时,边缘装置的异质性可能导致级体效应并降低SD感应的收敛速度。为了解决这个问题,我们提出了一种具有SD-Iave的稳定性舒长方案的异步训练算法,其中,还分析了收敛性能。模拟结果展示了所提出的SD感觉和证实我们分析的算法的有效性和效率。
translated by 谷歌翻译
图表表示学习近年来收到了增加的注意。大多数现有方法忽略了图形结构的复杂性,并限制了单个恒定曲率表示空间中的图形,这仅适用于特定类型的图形结构。此外,这些方法遵循监督或半监督的学习范例,从而显着限制其在实际应用中的未标记图中的部署。为了解决这些上述限制,我们首次尝试研究混合曲率空间中的自我监督的图表表示学习。在本文中,我们提出了一种新颖的自我监督的混合曲率图神经网络(SelfMGNN)。我们不是在一个单一的恒定曲率空间上工作,我们通过多个riemannian组件空间的笛卡尔乘积构建混合曲率空间,并设计分层注意机制,用于学习和融合这些组件空间的表示。为了实现自我超标学习,我们提出了一种新的双重对比方法。混合曲率的黎曼空间实际上为对比学习提供了多个黎曼观点。我们介绍了一个riemananian投影机来揭示这些观点,并利用精心设计的riemananian判别者,以便在里莫安尼亚视图中单独和跨越对比学习。最后,广泛的实验表明SelfMGNN捕获了现实中的复杂图形结构,优于最先进的基线。
translated by 谷歌翻译
联邦边缘学习(诱导)被认为是一个隐私保留的移动边缘网络的分布式学习框架。在这项工作中,我们调查了一种新的半分散式感觉(SD-enve)架构,其中多个边缘服务器协作以将更多数据从边缘设备纳入训练中。尽管通过快速聚合使能低训练延迟,但计算资源中的设备异质性劣化了效率。本文提出了一种异步训练算法来克服这个问题,其中边缘服务器可以独立设置相关的客户端节点的截止日期并触发模型聚合。要处理不同层次的僵化,我们设计了一个僵化意识的聚合方案并分析其收敛性能。仿真结果展示了我们所提出的算法在实现更快的收敛性和更好的学习性能方面的有效性。
translated by 谷歌翻译
具有多核光纤(MCF)无透镜微观镜片的定制光的产生广泛用于生物医学。然而,用于这种应用的计算机生成的全息图(CGHS)通常由迭代算法产生,这需要高计算工作,限制在体内光源刺激和光纤细胞操纵中的高级应用。纤维芯的随机和离散分布对CGHS引起了强烈的空间偏大,因此,非常需要一种能够快速生成MCF的量身定制的CGHS的方法。我们展示了一种新型阶段编码器深神经网络(Coreenet),它可以在近视频速率下为MCF产生精确定制的CGHS。模拟表明,与传统的CGH技术相比,CoreNet可以将计算时间加速两个大小,并增加产生的光场的保真度。首次,实时生成的定制CGHS在飞行中加载到仅相位的SLM,用于通过MCF微内窥镜在实验中产生动态光场。这铺设了实时细胞旋转的途径和几种需要在生物医学中实时高保真光传递的几种进一步的应用。
translated by 谷歌翻译